An empirical analysis of takeover predictions in the UK : application of artificial neural networks and logistic regression

نویسنده

  • Asim Yuzbasioglu
چکیده

Asim Yuzbasioglu An Empirical Analysis of Takeover Predictions in the UK: Application of Artificial Neural Networks and Logistic Regression This study undertakes an empirical analysis of takeover predictions in the UK. The objectives of this research are twofold. First, whether it is possible to predict or identity takeover targets before they receive any takeover bid. Second, to test whether it is possible to improve prediction outcome by extending firm specific characteristics such as corporate governance variables as well as employing a different technique that has started becoming an established analytical tool by its extensive application in corporate finance field. In order to test the first objective, Logistic Regression (LR) and Artificial Neural Networks (ANNs) have been applied as modelling techniques for predicting target companies in the UK. Hence by applying ANNs in takeover predictions, their prediction ability in target classification is tested and results are compared to the LR results. For the second objective, in addition to the company financial variables, non-financial characteristics, corporate governance characteristics, of companies are employed. For the fist time, ANNs are applied to corporate governance variables in takeover prediction purposes. In the final section, two groups of variables are combined to test whether the previous outcomes of financial and non-financial variables could be improved. However the results suggest that predicting takeovers, by employing publicly available information that is already reflected in the share price of the companies, is not likely at least by employing current techniques of LR and ANNs. These results are consistent with the semi-strong form of the efficient market hypothesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting peak particle velocity by artificial neural networks and multivariate regression analysis - Sarcheshmeh copper mine, Kerman, Iran

Ground vibrations caused by blasting are undesirable results in the mining industry and can cause serious damage to the nearby buildings and facilities; therefore, controlling such vibrations has an important role in reducing the environmental damaging effects. Controlling vibration caused by blasting can be achieved once peak particle velocity (PPV) is predicted. In this paper, the values of P...

متن کامل

Modeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran)

Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

پیش‌بینی پارامترهای امواج ناشی از باد در دریای خزر با استفاده از روش درختان تصمیم رگرسیونی و شبکه های عصبی مصنوعی

Prediction of wave parameters is necessary for many applications in coastal and offshore engineering. In the literature, several approaches have been proposed to wave predictions classified as empirical based, soft-computing based and numerical based approaches. Recently, soft computing techniques such as Artificial Neural Networks (ANNs) have been used to develop wave prediction models. In thi...

متن کامل

Predictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models

The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This   work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on De...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002